
J. Fluid Mech. (1998), vol. 359, pp. 239–264. Printed in the United Kingdom

c© 1998 Cambridge University Press

239

A numerical study of breaking waves
in the surf zone

By P E N G Z H I L I N AND P H I L I P L.-F. L I U
School of Civil and Environmental Engineering

Cornell University, Ithaca, NY 14853, USA

(Received 10 May 1997 and in revised form 15 November 1997)

This paper describes the development of a numerical model for studying the evolution
of a wave train, shoaling and breaking in the surf zone. The model solves the
Reynolds equations for the mean (ensemble average) flow field and the k–ε equations
for the turbulent kinetic energy, k, and the turbulence dissipation rate, ε. A nonlinear
Reynolds stress model (Shih, Zhu & Lumley 1996) is employed to relate the Reynolds
stresses and the strain rates of the mean flow. To track free-surface movements, the
volume of fluid (VOF) method is employed. To ensure the accuracy of each component
of the numerical model, several steps have been taken to verify numerical solutions
with either analytical solutions or experimental data. For non-breaking waves, very
accurate results are obtained for a solitary wave propagating over a long distance in
a constant depth. Good agreement between numerical results and experimental data
has also been observed for shoaling and breaking cnoidal waves on a sloping beach
in terms of free-surface profiles, mean velocities, and turbulent kinetic energy. Based
on the numerical results, turbulence transport mechanisms under breaking waves are
discussed.

1. Introduction
Knowledge of the wave breaking mechanism on a beach is essential to nearly all

coastal processes. In practice, breaking waves are powerful agents for mixing; they
can dislodge and throw sediments into suspension, which will then be carried by
wave-induced steady currents such as longshore currents or rip currents. The mixing
characteristics due to breaking waves in the surf zone have been investigated by many
researchers (Inman, Tait & Nordstrom 1971; Battjes 1975; Svendsen & Putrevu 1994).
During the last two decades significant advances have been made in both theoretical
and experimental studies toward the understanding of the characteristics of breaking
waves. Excellent reviews on the research progress on breaking waves and the surf
zone dynamics can be found in Peregrine (1983), Battjes (1988), and Svendsen &
Putrevu (1996).

Laboratory measurements of velocities and turbulence intensities in periodic break-
ing waves have been reported by Stive (1980), Stive & Wind (1982), Nadaoka & Kon-
doh (1982), Hattori & Aono (1985), Mizuguchi (1986), Nadaoka, Hino & Koyano
(1989), and Ting & Kirby (1994, 1995, 1996). All of these measurements were recorded
by either a hot-film anemometer or a laser Doppler velocimeter (LDV). More recently
the technique of particle image velocimetry (PIV) has been used to produce instanta-
neous velocity distributions under breaking waves (e.g. Lin & Rockwell 1994, 1995;
Skyner 1996). Turbulence velocities and thus the turbulent kinetic energy distribution
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can also be calculated from the PIV data (e.g. Chang & Liu 1997). Svendsen (1987)
analysed the turbulent kinetic energy data obtained up to 1985 and presented the
vertical profiles of the time-average turbulent kinetic energy over one wave period
at different locations in the surf zone. Svendsen showed that the turbulent kinetic
energy decreases with distance from wave trough; the variation of the turbulent ki-
netic energy in the water column is mild and the maximum turbulence intensity (the
square root of twice the turbulent kinetic energy) is only 5% to 10% of the phase
speed. Ting & Kirby’s (1994) data reconfirmed the earlier observations. Using the
phase-averaging technique, Ting & Kirby (1994) also showed that for spilling breaker
the horizontal turbulence velocities vary strongly in time near the trough region but
remain almost unchanged in the lower layer. For the plunging breaker, however,
the horizontal turbulence velocities vary in time throughout the entire water depth,
suggesting a strong penetration of the plunging jet.

The direct measurement of the velocity field near the breaking wave crest is ex-
tremely difficult because of the aerated water and the transient nature of the water
surface. However, Mizuguchi (1986) reported a set of velocity measurements for a
plunging breaking wave. His data showed that the magnitude of the turbulent kinetic
energy in the wave crest region is about two to three times larger than those under
the trough during the initial stage of wave breaking. He observed that the vertical
variation of the turbulent kinetic energy under the trough is weak. His data also indi-
cated that the turbulent velocity components in the horizontal and vertical direction
are more or less of the same order of magnitude throughout the entire flow field.

Progress in developing a numerical model for wave breaking processes has been
slow for obvious reasons. First, direct numerical simulation (DNS) of the turbulent
flows associated with wave breaking is still not practical. Therefore, certain turbulence
closure models are necessary which require adequate understanding of the physical
process. Second, the difficulties in calculating the free-surface profiles during and after
wave breaking are tremendous. In the aerated area the conventional assumptions that
the free surface is continuous and is a material surface are no longer valid.

Most of existing numerical models for breaking waves are based on depth-integrated
equations, such as the shallow-water equation, Boussinesq equation, or Serre equa-
tion. The wave breaking process is parameterized by adding a dissipation term to the
depth-integrated momentum equations. While Zelt (1991) and Karambas & Kouti-
tas (1992) used the eddy viscosity model, Brocchini, Drago & Ivoenitti (1992) and
Schäffer, Madsen & Deigaard (1993) employed the more complicated ‘roller’ model
to incorporate the velocity distribution in the aerated region. By adjusting parameters
associated with the model, the results of these models all showed very reasonable
agreement with the respective laboratory data for free-surface profiles. However, the
accuracy of the velocity field obtained from these models has not been established.
From experimental observations, it is quite clear that the vertical velocity component
becomes very strong near the toe of the roller. Therefore, the depth-integrated equa-
tions are unlikely to produce accurate solutions for the velocity field. Moreover, these
models lack the capability to determine spatial distributions of the turbulent kinetic
energy.

Johns (1978) and Johns & Jefferson (1980) developed a breaking wave model by
coupling simplified Reynolds equations for the ensemble average (from herein referred
to as the mean for simplicity) velocity field and a closure equation for the turbulent
kinetic energy. An additional length scale was introduced to relate the turbulent
kinetic energy and its dissipation rate. In their simplified Reynolds equations, the
pressure field has been assumed hydrostatic. Moreover, their governing equations
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were solved numerically in a transformed plane mapping the beach and the free
surface to two parallel straight lines. Consequently, their model does not allow a
multi-value free-surface configuration. Their numerical results have also not been
verified directly with experimental data.

Deigaard, Fredsoe & Hedegaard (1986) employed a simplified turbulent kinetic
energy k-equation to estimate the turbulence transport in the surf zone. In their
simplified k-equation model, all convection processes were neglected and only the
vertical turbulent diffusion process was considered in addition to the turbulence
production and dissipation. Svendsen (1987) found that Deigaard et al.’s model
overestimated the depth variation of turbulent kinetic energy when compared with
the available measurements (e.g. Stive & Wind 1982; Nadaoka & Kondoh 1982;
Hattori & Aono 1985). This overestimation may result from the the neglect of
convection processes in their model. The difficulty in determining the proper length
scale of the turbulence in the surf zone may also be the reason for the disagreement
between the modelling results and experimental measurements.

More recently Lemos (1992) constructed a breaking wave model with the
k–ε turbulence closure model. The conventional eddy viscosity model, which assumes
isotropic eddy viscosity, was employed. Lemos presented two sets of numerical re-
sults: one for a breaking solitary wave and the other for breaking periodic waves. His
numerical solutions, which were not compared with experimental data directly, gave
highly concentrated turbulence energy intensity above the wave trough region with
practically no downward spreading of turbulence by convection and diffusion. This
feature is inconsistent with most of laboratory experiments reported in the literature.

Based on the brief review given above, it is clear that none of the existing numerical
models can describe the wave breaking process adequately. In particular, none has
been verified carefully for the velocity field (both turbulent and mean). The objective
of this paper is to present the development and validation of a new model describing
the wave breaking processes in the surf zone.

In the following Section, the governing equations and boundary conditions used in
the model are summarized briefly. The mean flow field is governed by the Reynolds
equations with a nonlinear Reynolds stress model. Further turbulence closure as-
sumptions lead to a set of transport equations for the turbulent kinetic energy, k, and
the turbulence dissipation rate, ε.

In § 3 numerical schemes for solving the Reynolds equations and k-ε equations are
briefly described. The volume of fluid (VOF) method, which was originally developed
by Hirt & Nichols (1981), is employed to track the free surface. The details of each
numerical scheme are lengthy and can be found in the literature (e.g. Chorin 1968,
1969; Kothe, Mjolsness & Torrey 1991; Liu & Lin 1997). They are not presented
in this paper. However, the numerical errors introduced by the numerical scheme
are discussed in this section. An example of solitary wave propagation in a constant
depth is used to demonstrate the accuracy of the overall scheme for non-breaking
wave simulations.

In § 4, the model is extensively tested and verified with the experimental data for
a train of cnoidal waves breaking over a gentle slope (Ting & Kirby 1996). The
wave breaking is of the spilling type. Comparisons are made for the free-surface
profiles, the mean velocities and the turbulent kinetic energy. The agreement between
the numerical results and the experimental data is reasonably good. Finally, other
physical quantities obtained from the numerical model, such as the pressure field, the
eddy viscosity distribution, etc. are presented. Discussions on the role of turbulent
diffusion and convection in the wave breaking processes are also given.
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2. Mathematical formulation
In this section the governing equations and boundary conditions for a turbulent

flow field with a free surface are summarized. The details of the derivation of these
equations can be found in the literature (e.g. Launder et al. 1972; Launder & Spalding
1972; Launder, Reece & Rodi 1975; Rodi 1980). Only key assumptions and resulting
equations are given herein for completeness.

2.1. Governing equations

For a turbulent flow, the velocity field and the pressure field can be decomposed into
two parts: the mean velocity and pressure, 〈ui〉 and 〈p〉, and the turbulence velocity
and press ure, u′i and p′. Thus,

ui = 〈ui〉+ u′i; p = 〈p〉+ p′,

(2.1)

in which i = 1, 2, 3 for a three-dimensional flow. If the fluid is assumed to be
incompressible, the mean flow field is governed by the Reynolds equations:

∂〈ui〉
∂xi

= 0, (2.2)

∂〈ui〉
∂t

+ 〈uj〉
∂〈ui〉
∂xj

= −1

ρ

∂〈p〉
∂xi

+ gi +
1

ρ

∂〈τij〉
∂xj

−
∂〈u′iu′j〉
∂xj

, (2.3)

where ρ is the density of the fluid, gi the ith component of the gravitational accel-
eration, and 〈τij〉 the viscous stress tensor of the mean flow. For a Newtonian fluid,
〈τij〉 = 2µ〈σij〉 with µ being the molecular viscosity and 〈σij〉 = 1

2
(∂〈ui〉/∂xj+∂〈uj〉/∂xi),

the rate of strain tensor of the mean flow. In the momentum equation (2.3) the in-
fluence of the turbulence fluctuations on the mean flow field is represented by the
Reynolds stress tensor, ρ〈u′iu′j〉.

The transport equation for the Reynolds stress tensor can be derived from the
Navier–Stokes equations theoretically (e.g. Launder et al. 1975). Unfortunately, the
resulting equation for the Reynolds stress tensor contains terms involving higher-order
correlations among turbulence velocity components and turbulent pressure. Closure
assumptions are necessary to relate the higher-order correlations of the turbulent flow
field to the characteristics of the mean flow field. An alternative to the Reynolds
stress closure model is the so-called k–ε model in which the Reynolds stress tensor
is assumed to be related to the strain rate of the mean flow through the algebraic
nonlinear Reynolds stress model (Shih, Zhu & Lumley 1996),

ρ〈u′iu′j〉 = 2
3
ρkδij − Cdρ
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δij

)]
, (2.4)
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in which Cd, C1, C2, and C3 are empirical coefficients, δij the Kronecker delta, and k
the turbulent kinetic energy,

k = 1
2
〈u′iui′〉. (2.5)

The dissipation rate of turbulent kinetic energy ε is defined as

ε = ν

〈(
∂ui
′

∂xj

)2〉
, (2.6)

where ν = µ/ρ is the molecular kinematic viscosity.

We remark here that for the conventional eddy viscosity model C1 = C2 = C3 = 0
in (2.4) and the eddy viscosity is expressed as

νt = Cd
k2

ε
. (2.7)

While the conventional eddy viscosity model (2.7) limits the applications to isotropic-
eddy-viscosity turbulent flow, the nonlinear Reynolds stress model (2.4) can be applied
to more general turbulent flows.

The coefficients C2 and C3 can be determined by using the measurements for
Couette-type turbulent shear flow (Champagne, Harris & Corrsin 1970). The coeffi-
cient C1 is approximated by C1 = 2C3, following the estimation in Shih et al. (1996).
The coefficient Cd was given by Rodi (1980). The values for these coefficients are
summarized as follows:

Cd = 0.09, C1 = 0.0054, C2 = −0.0171, C3 = 0.0027. (2.8)

However, using constant coefficients may lead to violations of physics under some
extreme circumstances. For example, when (k/ε)(∂〈ui〉/∂xi) (indices not summed) −→
∞, the turbulence energy 〈u′iu′i〉 (indices not summed) in the ith direction may become
negative based on equation (2.4) and constant coefficient Cd in (2.8). To satisfy the
physical constraint of non-negative turbulence energy, the realizability (Shih et al.
1996) is enforced to make the coefficient Cd the inverse function of (k/ε)(∂〈ui〉/∂xi).
Similarly, for nonlinear terms, the coefficients are made the inverse functions of
((k/ε)(∂〈ui〉/∂xj))2 such that in any circumstance, the nonlinear contributions will
remain finite. The modified coefficients used in the present model are given as
follows:

Cd =
2

3

(
1

7.4 + Smax

)
, C1 =

1

185.2 + D2
max

,

C2 = − 1

58.5 + D2
max

, C3 =
1

370.4 + D2
max

,

 (2.9)

where Smax = (k/ε) max
[
|∂〈ui〉/∂xi| (indices not summed)

]
and Dmax = (k/ε) max[

|∂〈ui〉/∂xj |
]
. It is noted that all coefficients will return to their originally proposed

values as in (2.8) when Smax and Dmax approach zero.

The governing equations for k and ε can be derived directly from the Navier–Stokes
equations. The Reynolds stress tensor only appears in the k-equation as the turbu-
lence production term, −〈u′iu′j〉∂〈ui〉/∂xj . Following Rodi (1980), other higher-order
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correlations of turbulence fluctuations in both the k and ε equations are replaced by
closure conditions:

∂k

∂t
+ 〈uj〉

∂k

∂xj
=

∂

∂xj

[(
νt

σk
+ ν

)
∂k

∂xj

]
− 〈u′iu′j〉

∂〈ui〉
∂xj

− ε, (2.10)

∂ε

∂t
+〈uj〉

∂ε

∂xj
=

∂

∂xj

[(
νt

σε
+ ν

)
∂ε

∂xj

]
+C1ε

ε

k
νt

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
∂〈ui〉
∂xj
−C2ε

ε2

k
, (2.11)

in which σk , σε, C1ε, and C2ε are empirical coefficients. These coefficients have been
determined by performing many simple experiments; the recommended values for
these coefficients are (Rodi 1980)

C1ε = 1.44, C2ε = 1.92, σk = 1.0, σε = 1.3. (2.12)

The Reynolds equations, (2.2) and (2.3), and the k–ε transport equations, (2.10)
and (2.11), with the appropriate boundary conditions have been used to predict
successfully many complex turbulent flows (e.g. Rodi 1980). The empirical coefficients
given in (2.12) are surprisingly universal. In the present study the same set of values
for the empirical coefficients in the k–ε equations is used to simulate the wave breaking
process.

2.2. Boundary and initial conditions

Appropriate boundary conditions need to be specified. For the mean flow field, the
no-slip boundary condition is imposed on the solid boundary. The application of
boundary conditions on the mean free surface is less certain because the mean free
surface is not clearly defined for turbulent flows (Brocchini & Peregrine 1996; Liu
& Lin 1997). From the ensemble-average point of view, the mean free surface for a
turbulent flow is a stripe with finite thickness where the mean density varies from
that of water to that of air. The thickness depends on turbulence intensity in the
vicinity. Due to the difficulty in determining this thickness, we neglect the density
fluctuation near the free-surface in the present model and assume that the mean free
surface for turbulent flows is defined in the same way as for the laminar flow. The
zero-stress condition is imposed on the mean free surface by neglecting the effect
of air flow. The inflow boundary condition is case-dependent. In general, both the
free-surface displacement and mean velocities are given on the inflow boundary based
on either analytical solutions or measurements. The initial condition for the mean
flow is treated as still water with no wave or current motion.

For the turbulence field, near the solid boundary, the log-law distribution of mean
tangential velocity in the turbulent boundary layer is applied, where the values of k
and ε can be expressed as functions of distance from the boundary and the mean
tangential velocity outside of the viscous sublayer. On the free surface, the zero-
gradient boundary conditions are imposed for both k and ε, i.e. ∂k/∂n = 0 and
∂ε/∂n = 0, where n is the unit normal on the free surface, based on the assumption
of no turbulence exchange between the water and air. More detailed information on
the boundary conditions can be found in Rodi (1980) and Liu & Lin (1997).

Special attention should be paid to the specification of the initial and inflow bound-
ary conditions for both k and ε. According to equation (2.11), both the production
term and dissipation term for ε become singular when k is zero. Furthermore, the
turbulence production term in equation (2.10) is proportional to products of k itself
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and the model will produce no turbulence energy if there is no turbulent kinetic
energy initially. Thus, it is necessary to ‘seed’ a small amount of k in both the initial
condition and inflow boundary condition, i.e. k = 1

2
ut

2 with ut = δc, where c is the
wave celerity on the inflow boundary. The choice of δ is somewhat arbitrary and
in the present computations δ is chosen to be 2.5 × 10−3. We have also conducted
numerical experiments to vary δ from 2.5 × 10−6 to 2.5 × 10−3 and found that the
numerical results in the surf zone are essentially independent of the choice of δ.
However, near the breaking point, the choice of δ does affect the numerical results.
In general, the employment of the smaller δ slightly delays the initiation of breaking
processes. The value of ε is estimated by using the equation ε = Cdk

2/νt with νt = ξν,
where ξ is chosen to be 0.1 in the present model. Similarly, the choice of ξ has little
impact on the numerical solutions in the surf zone.

3. Numerical implementation
In the numerical model, the Reynolds equations are solved by the finite difference

two-step projection method (Chorin 1968, 1969). The forward time difference method
is used to discretize the time derivative. The convection terms are discretized by the
combination of the central difference method and upwind method. However, only
the central difference method is employed to discretize the pressure gradient terms
and stress gradient terms. To track free-surface locations through the wave breaking
process, the volume of fluid (VOF) method is used. The method was originally
developed by Hirt & Nichols (1981) and has been modified by Kothe et al. (1991).
This portion of the present model follows closely a computer program called ripple

developed by Kothe et al. (1991). Some modifications have been made to improve the
accuracy of ripple. The details of these improvements are given in Liu & Lin (1997).

The k–ε equations are essentially the transient convection–diffusion equations with
source and sink terms. Similar to the Reynolds equations, they are solved by discretiz-
ing the convection terms with the combined central difference method and upwind
method. The central difference method is used for the diffusion, production, and dis-
sipation terms. The time derivatives are discretized by using forward time difference.
The detailed implementation of the numerical model is again found in Liu & Lin
(1997).

The numerical solution to the Reynolds equations in the current model is first-order
accurate. Numerical errors are mainly caused by the discretization of time derivative
and convection terms. Additional errors caused by the VOF method are relatively
subtle and so far we have not been able to develop a systematic way to accurately
estimate them. On the other hand, the numerical errors caused by the discretization
of the time derivative and convection terms can be found analytically. The leading
numerical errors behave very similarly to the momentum diffusion by the molecular
viscosity. Considering a two-dimensional problem with ∆x ≈ ∆y and |〈u〉| ≈ |〈v〉|, the
numerical viscosity νn can be roughly estimated as

νn ≈
|〈u〉|∆x

2

(
α− |〈u〉|∆t

∆x

)
≈ |〈v〉|∆y

2

(
α− |〈v〉|∆t

∆y

)
, (3.1)

where α is the weighting function between the central difference method and upwind
method and is usually set to 0.3. The dissipation rate of the mean flow caused by
the numerical viscosity is proportional to the product of the numerical viscosity νn
and squares of the mean velocity gradients. In order to predict how much numerical
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errors affect true solutions, one needs to estimate the order of magnitude of νn and the
velocity gradients. To ensure numerical stability, we require that the Courant number,
which is defined as

Cr = max

[
|〈u〉|∆t

∆x
,
|〈v〉|∆t

∆y

]
(for all computational cells), be less than or equal to α. In most cases, we choose
Cr = α = 0.3 so that the order of magnitude of (α−|〈v〉|∆t/∆y) or (α−|〈u〉|∆t/∆x) in
the whole computational domain is roughly O(10−1). To simulate a typical laboratory-
scale problem, the mesh size ∆x ≈ O(10−2m) and particle velocity |〈u〉| ≈ O(5.0 ×
10−1m s−1). The estimated numerical viscosity is thus νn ≈ O(2.5×10−4m2 s−1), which
is very small, but is about two orders of magnitude greater than the molecular
viscosity of water. Therefore, the present model cannot simulate micro effects induced
by the molecular diffusion.

Fortunately, for most non-breaking water wave problems, the velocity gradients
are small. Therefore, the molecular and the numerical viscosity can only cause a very
small amount of energy dissipation. For breaking wave problems, the mean velocity
gradient can become very large during the breaking process, which could result in
large numerical dissipation. However, we found that for almost all laboratory-scale
breaking wave problems, the resulting eddy viscosity νt is of the order of magnitude of
2.5× 10−3m2 s−1, which is at least one order of magnitude greater than the estimated
numerical viscosity. Therefore, we believe that the energy dissipation induced by the
turbulence overwhelms the numerical dissipation in the breaking wave simulation.

To verify the above argument for non-breaking wave problems, we examine the
propagation of a solitary wave in constant water depth. The analytical solution for
the free-surface profile is given as

ζ(x, t) = a sech2

[(
3a

4d3
c

)1/2

(x− ct)
]
, (3.2)

where a is the wave height, dc the constant water depth, and c = [g(dc + a)]1/2 the wave
celerity at constant water depth. The solitary wave has the height of a = 0.1 m and
the constant water depth is dc = 1.0 m. In the numerical computations, discretizations
with a uniform grid system ∆x = 0.1 m and ∆y = 0.01 m are used. The time step ∆t
is automatically adjusted during the computation to satisfy the stability constraints.
The Courant number Cr and the weighting coefficient α are chosen to be 0.3. In this
test, the molecular viscosity and the Reynolds stresses have been set to zero such that
only the Euler equations are solved with the VOF method for free-surface tracking.
Therefore, any energy loss in the numerical solution is caused by numerical errors.
The velocity 〈u〉 and 〈v〉 and free-surface displacement ζ are specified at the left-hand
boundary based on the Boussinesq analytical solution for a solitary wave.

Figure 1(a) shows comparisons of the wave profiles at different time frames between
the numerical results and the analytical solutions. After propagating about 100
water depths, the numerical results are still very close to the analytical solution
except for a small phase shift. Figure 1(b) shows the numerical results of the time
histories of normalized mass and energy, which includes both kinetic energy and
potential energy. We find that both mass and energy are conserved during the whole
computations. From t = 12 s to t = 24 s when the solitary wave is completely within
the computational domain, the error in mass is less than 0.3% and the maximum
error in the total energy is only 0.9%.
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Figure 1. (a) Comparisons of solitary wave propagation in constant water depth at different time;
analytical solution (—), numerical solution (· · ·). (b) Time histories of normalized mass (- · - ·),
normalized total energy (—), kinetic energy (- - -), and potential energy (· · ·); the mass has been
normalized by the calculated mass at t = 12 s and the energy has been normalized by the calculated
total energy at t = 12 s.

We have also applied the numerical model to the shoaling of a non-breaking solitary
wave on a beach (Liu & Lin 1997). Again, the molecular viscosity was set to zero and
the k–ε model was not solved. The numerical results in terms of both free-surface
displacement and velocities were compared to both the experimental data using
PIV and accurate numerical solutions using the boundary integral equation method
(BIEM). Very good agreements were obtained. All these tests for non-breaking wave
problems prove the accuracy of the model which encourages us to extend it to
breaking wave problems.

4. Simulation of breaking waves on a sloping beach
In this section the numerical results simulating the evolution of a cnoidal wave train

breaking on a sloping beach are to be presented. Laboratory data are used to validate
the numerical model first. Numerical solutions are then used to investigate some
turbulent characteristics which cannot be completely revealed by the experimental
data.

4.1. Experimental setup and computational discretization

The detailed experimental setup is given in the original papers by Ting & Kirby
(1994, 1996). Only the important parameters are summarized here. The following
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Figure 2. Sketch of the experimental setup and the computational domain. The still-water depth
is represented by d and the time-averaged water depth is represented by h = d + ζ̄, where ζ̄
is the time-averaged water surface elevation. The beach slope is 1/35 and is connected to a
constant depth dc = 0.4 m. The breaking point is located at xb/dc = 16.000 and four measurement
cross-sections (1–4) are located at (x− xb)/hb=4.397, 7.462, 10.528, and 13.618, where hb = 0.498dc
is the time-averaged water depth at the breaking point.

notation is adopted in this paper: ζ is the instantaneous water surface elevation, and

ζ̄ = (1/T )
∫ T

0
ζdt is the time-average water surface elevation over one wave period

T . The local still water depth is represented by d and the local time-average water
depth is represented by h = d+ ζ̄.

In the wave tank, a beach with constant slope of s = 1/35 is connected to a region
with constant depth dc = 0.4 m. The coordinate system is chosen so that x = 0 is
located at the position where the still water depth is d0 = 0.38 m (see figure 2). The
incident cnoidal wave has a wave height H = 0.125 m in the constant-water-depth
region and wave period T = 2.0 s. From the laboratory records, waves break at
xb = 6.4 m with the time-average water depth of hb = 0.199 m. The velocities and
free-surface displacement were measured at six vertical cross-sections shoreward of
the breaking point. The mean velocities and free-surface displacement were computed
by performing phase averaging of the measured data 20 minutes after the first wave
was generated. The turbulence velocities were extracted from the data after the mean
velocities were obtained. The data measured at (x− xb)/hb = 4.397, 7.462, 10.528, and
13.618 will be used for comparisons with the numerical results (These cross-sections
are shown in figure 2 as 1, 2, 3, and 4, respectively).

In the numerical simulations, the computational domain starts at x = −4.3 m
instead of the actual location of the wave maker to reduce the computational effort.
The whole domain is discretized into a 900× 77 grid system with a uniform grid in
the x-direction, ∆x = 0.025 m, and a non-uniform grid in the y-direction with the
minimum grid ∆ymin = 0.006 m being distributed near the free surface. The time step
is automatically adjusted during the computation to satisfy the stability constraints.
Both the mean velocities and free-surface displacement are specified on the left-hand
boundary (x = −4.3 m) based on the analytical solution for cnoidal waves.

4.2. Comparison of experimental data and numerical results

In this section, comparisons between the experimental data and numerical results
are presented for the normalized mean free-surface displacement, mean velocities,
and turbulence intensity. In the experiments, the mean quantities were obtained by
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performing phase averaging after the waves had reached the quasi-steady state. These
phase-average quantities should be very close to the ensemble-average quantities
which were obtained from the numerical model. However, the turbulence field calcu-
lated by using the phase-average method may also contains the noise generated by
random waves during the breaking process. Furthermore, in the experiments, only
two components of turbulence velocities were measured by LDV and the total tur-
bulent kinetic energy was estimated by the empirical formula after Svendsen (1987),
i.e. k = 2

3
(〈u′2〉 + 〈v′2〉), where 〈u′2〉1/2 and 〈v′2〉1/2 are turbulence velocities in the

horizontal and vertical direction, respectively. This approximation may also introduce
some uncertainties in the following comparisons.

In our computations, in order to reduce the computational effort, we did not
calculate the wave propagation for the entire experimental period, 20 minutes, which
would have corresponded to the passage of 600 waves and would have required
about 960 CPU hours using a single processor of supercomputer IBM SP2. Instead,
numerical solutions presented herein are from t′ = 16.6 s to t′ = 18.6 s with t′ = 0.0 s
representing the beginning of the numerical simulation. This particular initial time
t′ = 16.6 s matches with the time t/T = 0 in the phase-average experimental results
and it corresponds to the passage of the ninth wave past the lateral boundary in
the numerical results. The computed results for mean velocities and free-surface
profiles indicate that the computed waves in the surf zone have nearly, but not
completely, reached the quasi-steady state, i.e. there is very small difference between
two successive wave cycles. This difference suggests that the setup and setdown
has not fully developed and thus the calculated mean water depth can be inaccurate.
Therefore, when we make the comparisons, we must realize that the difference between
the numerical results and experimental data might be partly caused by the fact that
our numerical results have not reached the quasi-steady state. Nevertheless, the major
wave and turbulent characteristics under breaking waves should be well captured by
the numerical simulations.

Figures 3 to 6 show the comparisons at four vertical cross-sections in the surf
zone. At each location, comparisons are made at four different elevations below the
trough level. The figures in the left-hand column are measurements and those in the
right-hand column are numerical results. Free-surface displacements are normalized
by the local time-average water depth h and the mean velocities and turbulence
intensities are normalized by the local phase velocity C = (gh)1/2. It is noted that to
be consistent, we use measured h in the normalization for both laboratory data and
numerical results.

Figure 3 shows the comparisons at (x− xb)/hb = 4.397, which is the measurement
section closest to the breaking point (see figure 2). The overall agreement between
the experimental data and the numerical results for the free-surface displacement and
mean velocity components is reasonable. However, numerical results overestimate the
mean velocities.

The pattern of turbulence intensity in the simulation results (figure 3 d) is quite
different from that in the measurements (figure 3D). The experimental data show no
obvious correlation between the turbulence intensity and the passage of the broken
wave, which is quite different from the turbulence characteristics at other measurement
sections in the surf zone (see figures 4D, 5D, and 6D). At this moment, we have no
sound evidence to interpret this phenomenon.

The numerical model also significantly overestimates the turbulence intensity, which
results in excessive energy dissipation, producing the lower wave crest as shown in
figure 3 (a) and the excessive vertical mixing rate that causes the spreading of the
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Figure 3. Comparisons of experimental data (A–D) and numerical results (a–d) at
(x− xb)/hb = 4.397; (y − ζ̄)/h = −0.2623 (—), −0.4909 (- - -), −0.7194 (- · - ·), −0.9080 (· · ·).

horizontal mean velocity across the water depth as shown in figure 3 (b). In fact,
we have found from extensive numerical tests that the numerical model always
overestimates the turbulence level near the breaking point. The primary reason is
that the current turbulence closure model cannot accurately predict the initiation of
turbulence in a rapidly distorted shear flow region such as the initial stage of wave
breaking. The uncertainties in the initial and inflow boundary conditions for turbulent
kinetic energy also introduce difficulties in accurately predicting the breaking point.
In addition, due to the limitation of numerical resolution, the model cannot capture
the details of the small overturning jet at the point of breaking, which is the major
source of turbulence, and thus cannot handle accurately the turbulence generation
during this time period. Fortunately, after the wave breaks and the resulting bore
starts to propagate in the onshore direction, the small-scale effect of the overturning
jet is no longer important. Therefore, the model can simulate both the turbulence
field and mean flow field in the surf zone away from the breaking point very
well.
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Figure 4. Comparisons of experimental data (A–D) and numerical results (a–d) at
(x− xb)/hb = 7.462; (y − ζ̄)/h = −0.2957 (—), −0.4820 (- - -), −0.6683 (- · - ·), −0.8857 (· · ·).

Figure 4 shows the comparisons at (x − xb)/hb = 7.462. The agreement between
the numerical results and the measurements in terms of free-surface displacement
and mean velocities is better than those shown in figure 3. These improvements are
partially due to the better simulation of the turbulence field as shown in figure 4 (d).
Not only the turbulence pattern but also the turbulence intensity are accurately
predicted by the numerical model. Both numerical and experimental results show that
in the upper level, the turbulence intensity is highly correlated to the surface profile,
while in the lower level the turbulence intensity remains almost constant during
one wave cycle. In the following detailed analysis of the turbulence transport, we
shall show that this difference is mainly caused by the different turbulence transport
mechanisms at different elevations.

Figures 5 and 6 show the comparisons at the cross-sections (x−xb)/hb = 10.528 and
(x− xb)/hb = 13.618, respectively. From these two figures, the wave heights are seen
to decay in the onshore direction, indicating continuous energy dissipation of mean
flow due to the turbulence energy extraction and dissipation. The overall agreement
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Figure 5. Comparisons of experimental data (A–D) and numerical results (a–d) at
(x− xb)/hb = 10.528; (y − ζ̄)/h = −0.2736 (—), −0.4764 (- - -), −0.6791 (- · - ·), −0.8142 (· · ·).

between the numerical results and the experimental measurements is fairly good for
the mean free-surface displacement, mean velocities, and turbulence intensity.

From figures 4 to 6, the turbulence patterns are similar in the surf zone with intensity
roughly proportional to C or (gh)1/2. To show this similarity more clearly, we overlap
the time histories of normalized turbulence intensity at the three vertical cross-
sections (figure 7). Only the highest elevations, which have the strongest turbulence
intensity, are shown. To exhibit the similarity, the normalized turbulence intensity
curves are shifted by 0.2T for the section (x − xb)/hb = 10.528 and 0.4T for the
section (x−xb)/hb = 13.618 (see figure 7). Although in the measurements, the highest
elevations at different cross-sections were not exactly at the same normalized level, the
similarity of the turbulence field in the surf zone is still evident. This feature is quite
different from that in plunging breaking waves (Ting & Kirby 1995). In plunging
breaking waves, the turbulence under the trough level gradually spreads out as the
broken wave propagates and creates a quite different turbulence pattern at different
locations in the surf zone. Therefore, it is possible to distinguish the breaker type not
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Figure 6. Comparisons of experimental data (A–D) and numerical results (a–d) at
(x− xb)/hb = 13.618; (y − ζ̄)/h = −0.3226 (—), −0.4729 (- - -), −0.6233 (- · - ·), −0.8489 (· · ·).

only by the shape of breaker tips but also by the resulting turbulence field under the
broken wave.

The similarity of the turbulence field in the surf zone can also be manifested by in-

vestigating the time-average turbulence intensity, VT (y) = (1/T ′(y))
∫ T

0
[2k(t, y)]1/2dt,

in which T ′(y) refers to the effective time that the position y is occupied by water
in one wave period. The vertical variations of VT (y)/C at different measurement
sections from both numerical results and experimental data are shown in figure 8.
The similarity of normalized VT in the surf zone is clearly observed. In addition, the
numerical results indicate that there exist two major regions of similarity of turbulence
intensity, namely the turbulence production region which is above the trough level
and has a rather large vertical gradient of turbulence intensity, and the lower region
below the trough level which has relatively small vertical variations of turbulence
intensity. Most measurements are limited to the lower region, in which the present
model slightly overestimates the vertical gradient of turbulence intensity.

The similarity of the turbulence field also shows up in time-average eddy vis-
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VT (y) = (1/T ′(y))
∫ T

0
[2k(t, y)]1/2dt at three measurement locations (x − xb)/hb = 7.462 (- - -

and ×), (x− xb)/hb = 10.528 (- · - · and ◦), (x− xb)/hb = 13.618 (· · · and ∗).

cosity, νT (y) = (1/T ′(y))
∫ T

0
νt(t, y)dt. Figure 9 gives the numerical results of the

vertical variations of normalized νT (y)/(hC) at different measurement sections. The
simulated νT/(hC) has a very similar pattern at different locations. The stratifi-
cation for eddy viscosity is not as obvious as for turbulence intensity and the
vertical distribution of νT (y)/(hC) can be approximated by a parabolic curve,

νT (y)/(hC) = Cν
(
(y + h− ζ̄/h)1/2

)1/2
, where Cν = 0.0077. The maximum values of

νT/(hC) are about 0.012 in this computation, which is of the same order of magnitude
as the values suggested by Svendsen, Schäffer & Hansen (1987).

4.3. Mean velocities and pressure field

In this section, we use the numerical model to further explore some interesting
physical mechanisms under the breaking wave which are difficult or even not feasible
to investigate by laboratory experiments. First, we examine the time variations of the
vertical distributions of mean velocities and pressure. Similar flow characteristics are
observed at four locations. To be concise, in the following discussion, only the results
at (x− xb)/hb = 7.462 are presented.
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The ‘roller’ has been defined as the aerated area of recirculating flow in the front
of the turbulent bore (Battjes 1988). In the ‘roller’ region, the horizontal fluid particle
velocity is roughly equal to the local phase velocity C . This ‘roller’ concept has been
adapted by Schäffer et al. (1993) in their numerical model to simulate the wave
breaking process. In their model, the vertical variation of horizontal velocity was
divided into two regions with the upper region representing the ‘roller’ propagating at
the phase velocity. Although the ‘roller’ concept has been widely used to describe the
turbulent bore front in the surf zone, detailed measurements of velocity profile in the
‘roller’ region have not been reported mainly because of the difficulties in obtaining
accurate measurements in the aerated region.

Figure 10 provides the simulation results at the location of (x − xb)/hb = 7.462:
figure 10 (a) shows the time history of the free-surface elevation, and figure 10 (b)
displays the vertical variations of the normalized mean horizontal velocities, 〈u〉/C ,
at t/T = 0.05, 0.25, 0.45, 0.65, and 0.85. The ‘roller’ region exists in the upper level of
the breaking wave front with the mean particle velocity about 80% of the local phase
velocity C . In the lower part, beneath the trough level, the mean velocity field is little
affected by the breaking process which leads to a rather uniform velocity distribution.
From the numerical simulation, there exists a transition region within which the mean
horizontal velocity decreases gradually from the ‘roller’ region to the lower part of
the wave (figure 10 b). The thickness of this transition region is about three times of
that of the ‘roller’. A similar phenomenon was observed in laboratories for turbulent
bores by Peregrine & Svendsen (1978) and it served as the basis approximating the
velocity distributions in surf zone (Svendsen & Madsen 1984). This transition region
is very important for the turbulence transport processes which we shall discuss later.

The magnitude of the vertical velocity decreases linearly with the distance below the
trough level (figure 10 c). At the breaking wave front where the wave becomes steep,
the maximum vertical velocity appears near the time-average water surface elevation
and it decreases toward the crest of the wave. From figure 10 (b) and figure 10 (c),
apart from in the region very close to the propagating turbulent bore, both horizontal
and vertical velocities behave similarly to those in the non-breaking wave, i.e. the
horizontal velocity is nearly uniform over the depth and the vertical velocity increases
linearly from the bottom. This feature is observed at all other measurement sections



256 P. Lin and P. L.-F. Liu

〈u〉 /C

ζ–ζ

h

(a)
0.5

0

–0.5

–1.0
0 0.2 0.4 0.6 0.8

t /T

y–ζ

h

0.5
(b)

0

–0.5

–1.0
–1 0 1

0.5

0

–0.5

–1.0
–1 0 1

0.5

0

–0.5

–1.0
–1 0 1

0.5

0

–0.5

–1.0
–1 0 1

0.5

0

–0.5

–1.0
–1 0 1

y–ζ

h

0.5
(c)

0

–0.5

–1.0
–1 0 1

0.5

0

–0.5

–1.0
–1 0 1

0.5

0

–0.5

–1.0
–1 0 1

0.5

0

–0.5

–1.0
–1 0 1

0.5

0

–0.5

–1.0
–1 0 1

〈v〉 /C

y–ζ

h

0.5
(d )

0

–0.5

–1.0
–1 0 1

0.5

0

–0.5

–1.0
–1 0 1

0.5

0

–0.5

–1.0
–1 0 1

0.5

0

–0.5

–1.0
–1 0 1

0.5

0

–0.5

–1.0
–1 0 1

( p–p0) /(ρgh)

Transition

Roller

Lower

Figure 10. Computed free-surface profile (a), mean velocities (b, c), and pressure difference between
actual pressure p and hydrostatic pressure p0 (d) at (x− xb)/hb = 7.462 and t/T = 0.05, 0.25, 0.45,
0.65, and 0.85.

downstream of the breaking point, suggesting that the breaking process is a fairly
local process and its direct influence on the rest of the wave motions through the
turbulence field is not very significant. We shall discuss this in more detail in the next
section.

It is well known that for non-breaking shallow-water waves, hydrostatic pressure
is a good assumption. The assumption of hydrostatic pressure dramatically simplifies
the derivation of depth-average equations, i.e. shallow-water equations, which can be
applied to the very large-scale computations such as tsunami simulation (Liu et al.
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1993). For breaking waves, due to the relatively strong vertical motion under the
breaking wave front, it is generally not clear if the hydrostatic pressure assumption
is still valid. The simulation results produced by our numerical model provide the
opportunity to validate the hydrostatic pressure assumption. In figure 10 (d), the
difference between the computed pressure and hydrostatic pressure is plotted. Under
the wave trough, the mean pressure distribution is almost hydrostatic. Under the
breaking wave front, due to the particle deceleration, the magnitude of the pressure
is less than the hydrostatic pressure by about 7% near the bottom.

4.4. Turbulence transport mechanisms

From figures 7 to 9, the similarity of the turbulence field below the trough level in the
surf zone is evident. However, since the laboratory measurements were only conducted
below the trough level, information on the turbulence field and turbulence transport
in the upper aerated region is missing. In this section, we attempt to fill in the
missing information by using the numerical results. In the following discussion, each
individual term in the turbulent kinetic energy transport equation (2.10) calculated
from the numerical results is plotted as a function of time for selected elevations.
By analysing the relative importance of each transport term, we should be able to
determine the dominant turbulence transport mechanisms at a particular elevation.
The analyses will be made in both the lower region, where the analyses can be validated
against the measured turbulence data, and the upper region, where experimental data
are not available. We again only show the analyses at (x− xb)/hb = 7.462.

We first examine the turbulence transport in the upper region, (y− ζ̄)/h = −0.0870,
as shown in figure 11 (b). This elevation is in the lower part of the transition region
(see figure 10). With the passage of the turbulent bore front, there is a sharp increase
of ∂k/∂t, which indicates the rapid increase of turbulent kinetic energy. The major
contribution to this large rate of change of turbulent kinetic energy is the turbulence
production and vertical diffusion (figure 11 b). Since this elevation is in the transition
region, it is not surprising that the turbulent kinetic energy is contributed by both
the turbulence production induced by the relatively large velocity gradient and the
downward turbulent diffusion from the ‘roller’ region where the turbulent kinetic
energy is the strongest. We shall see this more clearly when we later plot the spatial
distribution of turbulent kinetic energy. From figure 11 (b), we also see that the
rate of k change drops very quickly after the passage of the bore front due to the
reduction of turbulence production and diffusion. Another important mechanism is the
vertical convection, 〈v〉∂k/∂y, which most of the time is positive and acts to reduce
the turbulent kinetic energy. The positive 〈v〉∂k/∂y is caused by the simultaneous
positiveness of both 〈v〉 and ∂k/∂y, which acts to transport the low-turbulence flow
in from the lower part of wave.

The turbulence transport mechanisms about 3.4 cm lower are quite different (fig-
ure 11 c). This elevation corresponds to the highest one in the laboratory measure-
ments (solid lines in figures 4D and 4 d). All quantities are almost one order of
magnitude smaller than those appearing in figure 11 (b). One outstanding feature of
the turbulence transport at this elevation is the existence of two peaks in ∂k/∂t. The
first peak is mainly caused by the turbulence production mechanism which is closely
correlated to the passage of the bore front. The vertical convection again plays the
role of reducing the turbulent kinetic energy by advecting the low-turbulence flow
in. But the vertical diffusion contributes little to the first peak. Instead, the time
lag makes the peak of vertical diffusion occur about 0.1T later than the peak of
turbulence production and thus contributes to the second, but higher, peak of the
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Figure 11. Computed free-surface profile (a); and transport terms for k in equation (2.10) at
(xb − x)/hb = 7.462 and (y − ζ̄)/h = −0.0870 (b), -0.2957 (c), and −0.8857 (d). All terms are

normalized by g(gh)1/2; 1: time rate of change of k, 2: negative horizontal convection (−〈u〉(∂k/∂x)),
3: negative vertical convection (−〈v〉∂k/∂y), 4: horizontal diffusion, 5: vertical diffusion, 6: turbulent
production, 7: turbulent dissipation.

rate of change of turbulent kinetic energy. In the meantime, the vertical convection
changes to contribute to the increase of turbulence due to the change of the mean
vertical velocity from positive to negative after the passage of the wave front (see
figure 10). The horizontal convection also starts to contribute by bringing in the
upstream flow with now higher turbulence intensity caused by the passage of the
turbulent bore. Together with the gradually decreasing turbulence production mech-
anism, the convection and vertical diffusion overwhelm the increasing turbulence
dissipation to create the second peak in the increase of turbulent kinetic energy. Un-
der any circumstances, the horizontal diffusion is negligibly small compared with the
rest of terms. About 0.2T after the wave front passes, the dissipation term gradually
suppresses the rest of the turbulent contributions and the turbulent kinetic energy
starts to decrease.
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Moving about 9.5 cm downwards, which corresponds to the lowest elevation in the
laboratory measurements (dotted line in figure 4D and 4 d), one observes another
transport mechanism. The turbulence production is again closely correlated to the
passage of the bore front but of much smaller magnitude compared to those at the
upper elevations. Overcoming the negative contribution by the vertical convection
and the almost constant dissipation, the production creates a very small peak in the
change rate of turbulent kinetic energy. After the passage of the turbulent bore, the
total contribution of the turbulence energy increase is almost exactly balanced by the
dissipation mechanism and thus results in the nearly equilibrium state of turbulence
field.

4.5. Spatial distribution of turbulent and vortical field

Another advantage of the numerical model is its ability to display the mean vortical
field and the turbulence field in the spatial domain. In this section, we show two
snapshots at t/T = 0 and t/T = 0.4 of turbulence intensity, mean vorticity, and eddy
viscosity (figure 12 and figure 13).

The normalized turbulence intensity is shown in figure 12 (a). The highest turbulence
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Figure 13. Computed normalized (a) turbulence intensity (2k)1/2/ [g(dc + a)]1/2 (0.05 to 0.20 with

interval of 0.05), (b) mean vorticity ω/
[
g/(dc + a)

]1/2
[−0.5 to −2.5 with interval of −0.5 (—) and

0.5 (· · ·)], and (c) eddy viscosity νt/ν (500 to 5000 with interval of 500) at t/T = 0.4.

intensity appears in the ‘roller’ region. As the wave propagates forward, the turbulent
kinetic energy gradually decreases but with very similar patterns of turbulence dis-
tribution accompanied by the decaying wave amplitude (figure 13 a). All these agree
qualitatively with the experimental observation and theoretical expectation. However,
as we have mentioned before, our numerical model predicts the initiation of turbu-
lence earlier before the wave front reaches the measured breaking point. This becomes
obvious from figure 13 (a) which shows the snapshot at t/T = 0.4. From this figure,
we observe that turbulence starts to appear at x/dc = 10 instead of at x/dc = 16, the
measured breaking point. It is one of our future tasks to resolve this problem.

It has been observed by many researchers that horizontal vortices are generated
under the breaking wave (e.g. Nadaoka et al. 1989). However, direct computations for
the mean vortical field under breaking waves are rare. Figures 12 (b) and 13 (b) show
the normalized mean vortical field under the breaking wave. The vorticity is generated
at the toe of the wave front and is then left behind by the wave and convected to
the deeper region when the wave passes. The source of vorticity is generally in
the transition region, while the source of turbulence is in the ‘roller’ region above
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the transition region. The vorticity transport also exhibits a different feature from
turbulence transport. It is mainly caused by the unique vorticity generation and
destruction mechanisms under a breaking wave. In the breaking wave, the mean
vorticity is created on the free surface and diffuses into the interior region. There
are no significant production and destruction mechanisms in the interior region to
change the total amount of vorticity and the diffusion and convection are the only
two processes that redistribute the vorticity. The mean vorticity can only be destroyed
on either the free surface or the bottom. From the numerical simulation, it is seen
that the normalized vorticity under the turbulent bore is of the order of magnitude
of O(1) to O(10) and it is negative (clockwise). The vorticity generated on the bottom
is almost one order of magnitude smaller than that generated by the turbulent bore
and it can be either positive or negative (not shown clearly in this plot), varying in
both time and space.

It is noted that there is positive (counter-clockwise) vorticity predicted by the
model in the crest region before the wave breaks, which is much smaller than the
negative vorticity generated by the breaking wave. The existence of such small positive
vorticity is caused by the enforcement of the zero shear stress on the free surface.
According to Longuet-Higgins (1992), the vorticity on the free surface must be given
by ωs = −2κq, where κ is the curvature of the streamline and q is the tangential
particle speed. Therefore, for non-breaking waves, the maximum surface vorticity ωs
always occurs at the crest where both the particle velocity and streamline curvature
are maximum. However, the thickness of the surface vortical layer, which can be
estimated by ls = (νT )1/2 for a periodic wave, is generally very small. Therefore,
unlike the vorticity generated by the breaking wave, the positive surface vorticity has
little impact on the interior flow field.

It is also noted that both turbulence intensity and mean vorticity are mainly
concentrated in the regions very close to breaking wave fronts. In other regions,
these two quantities are rather small, which suggests that the mean flow is almost
a potential flow with little influence from the breaking processes. This supports our
earlier statement that the spilling breaking is a rather local process with its effect
mainly confined in the region close to the breaking front.

The eddy viscosity is another important parameter which measures the mixing rate
for both momentum and substances. The spatial distribution of computed eddy vis-
cosity is presented in figures 12 (d) and 13 (d). The eddy viscosity has been normalized
by the molecular viscosity ν = 1.0×10−6m2 s−1. The eddy viscosity has a very different
distribution from that of turbulence intensity. As the water depth decreases, the eddy
viscosity decreases faster in the onshore direction than the turbulence intensity. This
is mainly caused by the fact that the eddy viscosity is proportional to the turbulence
length scale l and turbulence intensity (2k)1/2, i.e., νt ∼ l k1/2, both of which decrease as
the water depth decreases. Therefore, compared with the turbulence intensity (2k)1/2,
eddy viscosity decreases much faster because of the simultaneous decrease of l which
is generally proportional to the water depth in the surf zone.

5. Concluding remarks
In this paper, we have presented a numerical model which can be used to simulate

breaking waves in the surf zone. By applying it to the spilling wave breaking problem,
we found that the model results compare very well with experimental data, especially
in the inner surf zone. The following wave or turbulence characteristics for the spilling
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breaking wave in the surf zone are either confirmed or found by the numerical
simulation.

(i) There exists a ‘roller’ region in the breaking wave front with a mean particle
velocity of at least 80% of the local wave celerity. The ‘roller’ is a source region of
turbulence generation. In the lower region below the trough level, the mean horizontal
velocity is nearly uniform. In between, there exists a transition region with thickness
about three times of that of the ‘roller’ region. The particle velocity in this region
decreases gradually from the ‘roller’ region to the lower part of the wave. The mean
vorticity is generated in the transition region.

(ii) The pressure distribution under the spilling breaking wave is almost hydrostatic.
The maximum deviation from hydrostatic pressure is only 7%, which occurs under
the broken wave front.

(iii) The spilling breaking process is a rather local phenomenon. Except in the
region very close to the breaking wave front, both mean vorticity and turbulence
intensity are very weak.

(iv) In the surf zone, there exists a similarity region for the turbulence field. In
this region, the time histories of the turbulence intensity at different vertical cross-
sections are similar with their magnitudes proportional to C . The vertical variations
of the time-average turbulence intensity and eddy viscosity are also similar with their
magnitudes proportional to C and hC , respectively.

(v) The turbulence transport mechanisms are quite different at different elevations
in the surf zone. In the transition region between the ‘roller’ region and the bottom
region, the dominant mechanisms are turbulence production, vertical diffusion, and
vertical convection. The first two contribute to the increase of turbulence but the last
reduces the turbulence. In the bottom region, all turbulence transport mechanisms
become very weak (two orders of magnitude smaller than those in the transition
region) and thus the turbulence level is nearly constant during one wave period.
In between, all turbulence transport mechanisms are active except the horizontal
diffusion. The production, which is correlated with the passage of the breaking wave
front, is responsible for the first increase of the rate of change of turbulent kinetic
energy. The convection and vertical diffusion are responsible for the second but larger
increase of the rate of change of turbulent kinetic energy, which occurs about 0.1T
after the passage of the wave front. The dissipation then gradually grows and finally
overcomes all the turbulent contributions, causing a decrease of the rate of change of
turbulent kinetic energy.

We have performed sensitivity analyses for the coefficients in the k–ε model. The
only sensitive coefficient was C1ε, which controls the ‘production’ rate of turbulence
dissipation. A 10% change of this coefficient from its suggested value would result
in more than a 50% change of total turbulent kinetic energy in the surf zone after
the wave breaks, which causes a significant change of wave profile. A 10% change
of other coefficients from their suggested values, however, only cause less than a
10% change of total kinetic energy in the surf zone, which has little influence on the
wave profile. In view of the fact that our numerical results compare well with the
experimental data we conclude that the recommended values for these coefficients
should be used. We have also attempted to demonstrate the advantage of the new
turbulence closure model over the conventional eddy viscosity model. By simulating
the same problem and comparing the numerical results to the available experimental
data, we found that the new model has produced consistently better results in terms
of mean free-surface displacement, mean velocities and turbulence intensity.
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